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Abstract
A self-consistent treatment of two- and three-point functions in models with
trilinear interactions forces them to have opposite anomalous dimensions. We
indicate how the anomalous dimension can be extracted nonperturbatively by
solving and suitably truncating the topologies of the full Dyson–Schwinger set
of equations. The first step requires a sensible ansatz for the full vertex part,
which conforms to first order perturbation theory at least. We model this vertex
to obtain typical transcendental relations between anomalous dimension and
coupling constant g which coincide with known results to order g4.

PACS number: 11.10.Gh

1. Nonperturbative equations

Renormalizable quantum field theories such as QED, QCD or pseudoscalar Yukawa theory
are characterized by anomalous dimensions which determine the asymptotic properties of the
Green functions as all momenta are scaled. Specifically the anomalous dimension γ of a
quantum field is determined through the asymptotic behaviour of the propagator (p2)−1−γ

when p2 → ∞. The calculation of γ as a power series in the renormalized coupling constant
g, arising in the trilinear interaction Lagrangian, has occupied much time and effort and is
known up to order g8 for certain models. It would be nice if one could calculate γ to all orders
of g by summing subclasses of diagrams, corresponding to particular topologies, without
excessive effort. This paper is devoted to outlining a method by which this might be achieved.
It is based on conformal scaling of Green functions at asymptotic momenta, with anomalous
dimensions providing the self-regulation of the field theory [1, 2] in question. Such a proposal
makes eminently good sense at a zero g = g∗ of the beta function on the positive real line and
we simply assume that this applies in all that follows. However, it must be pointed out that for
the models considered later there is no indication of such a zero and with its corresponding
coupling constant.

The basic idea behind the method is to eliminate the renormalization constants as far as it
is possible and to write the renormalized Green functions in terms of one another as a power
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series in the coupling constant with ever more complicated topologies. This produces a set
of self-consistent Schwinger–Dyson equations of the full propagator in terms of itself and
the proper vertex part, though there exist infinitely different topological terms in the skeleton
expansion of course. In the end one is forced to truncate these topological contributions,
but in any case it is rather easy to show (see below) that the only self-consistent behaviour
is one where the anomalous vertex and propagator dimensions are oppositely related. The
equations in principle then yield an equation for the anomalous dimensions in terms of the
renormalized coupling constant. In the past it has proved relatively simple to sum over
particular topologies where the vertex function remains undressed, but in this paper we shall
emphasize the importance of considering the full three-point vertex (not just in some kinematic
limit) when studying these equations; this is the novel aspect of our work and by this means one
may hope to improve on the rainbow [3, 4], ladder and chain [5] approximations of diagram
sets—the favourite ones studied thus far and with great aplomb by Broadhurst and Kreimer.

To illustrate what is involved, consider the case of the renormalizable gσφ†φ interaction
in six dimensions, rather than gφ3/6! theory [6], ignoring triple σ interactions for the moment.
Including renormalization constants, the equation for the φ and σ propagators, �φ and �σ

respectively, expressed in terms of full Green functions, in the massless case reads

�−1
φ (p) = Zφp2 − ig2Zg

∫
d̄6k�(p, p + k, k)�φ(k)�σ (p + k)

= Zφp2 − ig2
∫

d̄6k�(p, p + k, k)�φ(k)�σ (p + k)�(p, p + k, k)

− g4
∫

d̄6k d̄6q�(p, p + k, k)�φ(k)�σ (p + k)�φ(p + q)�σ (q)

×�(p, p + q, q)�(q, k, q − k)�φ(k − q)�(p + k, q + k, k − q) · · · (1)

�−1
σ (p) = Zσp2 − ig2Zg

∫
d̄6k�(p, p + k, k)�φ(k)�φ(p + k)

= Zσp2 − ig2
∫

d̄6k�(p, p + k, k)�φ(k)�φ(p + k)�(p, p + k, k)

− g4
∫

d̄6kd̄6q�(p, p + k, k)�φ(k)�φ(p + k)�φ(p + q)�φ(q)

×�(p, p + q, q)�(q, k, q − k)�σ (k − q)�(p + k, q + k, k − q) · · · . (2)

For each field, we know that in renormalized perturbation theory the sum of the series will
produce the large p scaling behaviour, �−1(p) � cp2(−p2/µ2)γ , where γ is given as a series
in g2, which can be computed1 order by order in perturbation theory, albeit with greater and
greater effort as the power of g2 rises. The purpose of this paper is to look for relations between
γ and g2, which correspond to particular truncations of various topological contributions to
the self-energy; such relations are normally given by a transcendental equation that can be
found via the Dyson–Schwinger equations. But how do we find them by suitably manipulating
equations (1) and (2)? For the moment neglect the first term on the right, which involves the
renormalization constant and seems to scale as p2; the remaining terms have the form

g2F2(p, µ, γ (g2)) + g4F4(p, µ, γ (g2)) + · · ·
and we must ask how they sum up to the scaling form on the left-hand side. It is possible, but
extremely unlikely that each of these terms behaves as p2 apart from logarithms, each contains
1 We anticipate that the constant c appearing in � behaves like unity when γ → 0; this is because the imaginary
part of �(1 + γ )/(p2 + iε)1+γ equals −πθ(−p2)/�(−γ )(p2)1+γ and this generalized function reduces to −πδ(p2)

for the free case γ = 0.
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an infinity (which is subtracted off by the Z-factor on the right) and they somehow combine
to produce the anomalous scaling; if this were true there would be little point in using the
skeleton expansion as a means of transcending perturbation theory. A more likely scenario,
which we shall assume hereafter, is that each of the contributions FN scales in exactly the
same way. Then it is not hard to work out what must be the scaling behaviour of the proper
vertex � to produce (p2)1+γ at large p2. One easily establishes that

�(λp, λ(p + k), λk) ∼ λ2γ��(p, p + k, k) γ� = γφ + γσ /2 (3)

will ensure that all the topological contributions FN to the two-point function yield the same
scaling as the external momentum p → ∞. (Without losing too much generality one may fix
the vertex function � = 1 either at the symmetrical Euclidean point p2 = (p + k)2 = k2 =
−µ2 or at zero-momentum transfer k = 0, p2 = (p + k)2 = −µ2, but that still leaves vast
freedom in the dynamics of � in (2), through its dependence on the momentum ratios.) As
for justifying why we drop the renormalization terms Zp2, we note that the wavefunction
renormalization constant may be generally defined by Z−1 ≡ limp2→∞ p2�(p) and then
Z can well vanish2 for negative γ , in which case dropping it from the self-consistent
but nonperturbative Schwinger–Dyson equations is not entirely absurd in the asymptotic
limit.

Specifically, let us contemplate the situation where one of the fields, say σ , remains
undressed (some sort of quenched approximation in which closed φ-loop graphs are
disregarded, signifying that induced multisigma interactions can be dropped). Thus, its
corresponding Zσ = 1, γσ = 0, so the scaling of � just becomes tied to the asymptotic
behaviour of the field φ: they are inverse to one another. This connection is unsurprising
especially in QED where the Ward identity �(p, p, 0) = ∂�−1/∂p at zero photon momentum,
already indicates that the scaling properties of the charged field and the soft vertex are intimately
tied (‘Z1 = Z2’ in a perturbative context). In section 2 we summarize what is known about
the vertex function in σφ†φ and Yukawa theory, the two models upon which we focus. There
we look for a nonperturbative version of � which reduces to first order perturbation theory,
with the correct singularities. Then in section 3 we show how this can be used to determine
the relation between γ and g2 even in the simplest kind of truncation encompassing the chain
and rainbow summations with various model vertex functions.

2. Structure of the proper vertex

2.1. Lowest order structure

One of the most elementary exercises in quantum field theory is to work out the first order
corrections to the propagator and vertex part, where we normally encounter infinities that
must be renormalized. Working in 2� dimensions (for isolating the infinities) leads one to the
typical expressions for the self-energy  and proper vertex correction �,

(p) = c2g
2
∫ ∫ 1

0
dx dy

δ(x + y − 1)�(2 − �)[
p2xy − m2

1x − m2
2y

]2−�

�(p1, p2, p3) = c3g
2
∫ ∫ ∫ 1

0
dx dy dz

δ(x + y + z − 1)�(3 − �)[
p2

1yz + p2
2zx + p2

3xy − m2
1x − m2

2y − m2
3z

]3−�

2 The condition Z = 0 applies to composite particles and agrees with this observation, but becomes problematic for
positive γ .
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where � → n = 2 or 3 in the integer limit and ci are symmetry factors including 1/(4π)�.
Subtraction of the pole terms by renormalization constants produces logarithms of the
denominators of each of the right-hand sides, normalized at some mass scale µ, which is
how dimensional transmutation and the renormalization prescription enter. One can recognize
the resulting expressions as the first terms of an expansion—which strictly makes sense at a zero
of the beta function when we proceed to the nonperturbative regime—of the Green functions
in powers of g2; for example for the massless two-point function, where the logarithmic term
is easily computed, we end up straightforwardly with

�−1(p) = p2 + c2g
2p2 log(−p2/µ2) + · · · � p2(−p2/µ2)γ

in keeping with γ = c2g
2 + · · ·. For the three-point function, renormalized at zero σ

momentum, the logarithm is actually a dilogarithm, being given by the integral

−� =
∫ 1

0

∫ 1

0

∫ 1

0
dx dy dz δ(x + y + z − 1) log

(
p2

1yz + p2
2zx + p2

3xy

−µ2(yz + zx)

)

= c3g
2

2

∫ 1

0
σ dσ

∫ 1

−1
dτ log

[(−p2
1

2µ2

)
(1 − τ)

+

(−p2
2

2µ2

)
(1 + τ) − p2

3σ(1 − τ 2)

4µ2(1 − σ)

]
(4)

whose singularities characterize the ‘triangle’ graph. It simplifies to pure logarithms when
p2

3 → 0, being proportional to

1

2

[
log

(
p2

1p
2
2

µ4

)
− 2 +

p2
2 + p2

1

p2
2 − p2

1

log

(
p2

2

p2
1

)]

which one should note is the order γ term of the expression

µ2

(1 + γ )
(
p2

1 − p2
2

)
[(

−p2
2

µ2

)γ +1

−
(

−p2
1

µ2

)γ +1
]

.

This bears an uncanny resemblance to the ratio [�−1(p2) − �−1(p1)]
/(

p2
2 − p2

1

)
that one

encounters when ‘solving’ for the longitudinal three-point vertex in gauge theories; we will
come back to this point presently. In any case it strongly suggests that the nonperturbative
form of the vertex possessing triangular topology exponentiates to

�(p1, p2, p3) = 2
∫ ∫ ∫ 1

0
dx dy dz ρδ(x + y + z − 1)

[
p2

1yz + p2
2zx + p2

3xy

−µ2(yz + zx)

]γ�

(5)

where the (symmetric in y, z) spectral function ρ(x, y, z) equals 1 up to first order in g2 and
γ� = −c3g

2/2. If we restrict ourselves to such topology, neglect the dressing of σ and reinsert
(4) into (1), this will produce a self-consistent equation for γφ in terms of g2, as we already
know that uniform scaling of FN requires γ� = γφ when σ is quenched.

The Feynman parametric form of � in the limit as p2
3 = 0, (but not p3 = 0) is

very suggestive of another Lehmann-like representation which one encounters in the gauge
technique. Thus, by changing variable to w2 = m2

1

/
y + m2

2

/
x in the self-energy, one may

convert from Feynman to dispersive form:

(p) =
∫ ∞

(m1+m2)2
dw2σ(w2)/(p2 − w2).
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In the particular case that m1 = m2 = m for the vertex function, which is often true, one can
make a similar conversion in � as p2

3 → 0:

� ∝
∫ 1

0
dx

∫ x

−x

du

1
2�(3 − �)[

1
2

(
p2

1 + p2
2

)
x(1 − x) + 1

2

(
p2

1 − p2
2

)
u(1 − x) − m2x

]3−�

=
∫ 1

0

�(2 − �) dx(
p2

2 − p2
1

)
(1 − x)

[
1(

p2
1x(1 − x) − m2x

)2−�

− 1(
p2

2x(1 − x) − m2x
)2−�

]

and closely resembling


(
p2

1

) − 
(
p2

2

)
p2

2 − p2
1

=
∫

dw2σ(w2)(
p2

1 − w2
) (

p2
2 − w2

) .

Thus, we anticipate that the vertex possesses a simplified dispersive-like representation when
one of the momenta is light-like, and this property might prove rather useful. Further progress
may need additional truncation of the skeleton expansion and other practical simplifications.

2.2. Perturbation theory

These remarks apply to all theories with basic trilinear interactions. Before looking at
nonperturbative aspects of the models g(σφ†φ)6D and (gψ̄γ5ψφ)4D, let us first note the
order g2 results for c2, c3 since they supply helpful weak-coupling limits for the two- and
three-point functions involving massless fields φ, σ and ψ .

In g(φ†φσ)6D one trivially finds that

(p) = g2

p4

(−p2

4π

)�
�(2 − �)�(� − 1)�(� − 1)

�(2� − 2)
(6)

where the limit � → 3 must be taken. Renormalizing at p2 = −µ2, one ends up with

(p) = − g2p2

6(4π)3
ln

(
−p2

µ2

)
.

Likewise the vertex correction is just expression (4), with c3 = 1/(4π)3. It may be expressed
[7] as an Appell function, but better still, it can be converted into a symmetrical sum of three
hypergeometric functions in arbitrary dimensions [8]; we will utilize this presently.

Turning to (gψ̄γ5ψφ)4D theory, the inverse renormalized ψ propagator to that order reads

S−1(p) = γ · p

[
1 − g2

32π2
log

(
−p2

µ2

)
+ · · ·

]
(7)

while the fully off-shell proper vertex part correction is given by

�5(p
′, p) = (A + B[γ · p′, γ · p])γ5 (8)

where, of the two scalar functions A and B, only the former carries the ultraviolet divergence.
(A massive theory, apart from modifying A and B, would have led to further terms such as
[Cγ · p + C ′γ · p′]γ5.) One readily finds that

A = ig2

2

∫
d̄2�k

k2

[
1

(p + k)2
+

1

(p′ + k)2
− (p − p′)2

(p + k)2(p′ + k)2

]
(9)
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and

B = − ig2

2�

∫
d̄2�k

k2

[
(p2 − p′2)

(
1

(p + k)2
− 1

(p′ + k)2

)
+ (p − p′)2

×
(

p2 + p′2 − (p − p′)2

(p + k)2(p′ + k)2
+

1

(p + k)2
+

1

(p′ + k)2
− 2k2

(p + k)2(p′ + k)2

)]
(10)

to be taken in the limit � → 2. In equation (10), � is nothing but the Källen function, namely,

� ≡ 4[(p · p′)2 − p2p′2] = p4 + p′4 + (p − p′)4

− 2p2p′2 − 2p2(p − p′)2 − 2p′2(p − p′)2.

It is interesting to look at the case (p − p′)2 → 0 in (9) and (10) before worrying about
renormalization; one gets

�5 → ig2

2

∫
d̄2�k

k2

[(
1

(p′ + k)2
+

1

(p + k)2

)
− [γ · p′, γ · p]

p′2 − p2

(
1

(p′ + k)2
− 1

(p + k)2

)]
γ5.

Again we note the structure ((p′) − (p))/(p′2 − p2) in the finite part, even though we are
not dealing with a gauge theory. Anyhow, renormalizing so that �5(p, p) = 0 for p2 = −µ2,
the finite B-type term remains unaffected, and we are left with the light-like limit

�5 → γ5 − g2

32π2

[
log

(
p2p′2

µ4

)
+

ln(p′2/p2)

p2 − p′2 [γ · p′, γ · p]

]
γ5.

Our aim is to identify these expressions as first order in g2 parts of some nonperturbative
construct, so as to capture at the very least the triangular topology of the full vertex function,
and then see how far we can take it from there.

2.3. Nonperturbative form

Let us start by reducing the perturbative vertex to a more manageable form. The first order
expression for �(p1, p2, p3) involves hypergeometric functions of two variables when the
dimension and masses are arbitrary. However, it can be simplified for mi = 0 in a very
elegant way and Davydychev [8] has shown the way to do this: draw three lengths of size√

p2
1,

√
p2

2,
√

p2
3 and let �123 = 1 if a Euclidean triangle can be drawn with those sides,

0 otherwise. Then �E = −� = 2
(
p2

1p
2
2 + p2

2p
2
3 + p2

3p
2
1

) − p4
1 − p4

2 − p4
3 is four times the

square of the area of such a triangle. The internal angles φi of the triangle are given in an
obvious notation by 2 sin φ1 =

√
�E

/
p2

2p
2
3, 2 cos φ1 = (

p2
2 + p2

3 − p2
1

)/√
p2

2p
2
3, etc and of

course φ1 + φ2 + φ3 = π . The result for

�
(
p2

1, p
2
2, p

2
3

) = ig2
∫

d̄2�r/[r2(p1 − r)2(p2 + r)2]

which leads to the hypergeometric answer,

� = g2�(2 − �)

(4π)�
(−p2

1p
2
2p

2
3

)2−�

[
2π�

3/2−�

E �123 − �2(� − 1)

�(2� − 2)

×
( (

p2
1p

2
2

)2−�

p2
1 + p2

2 − p2
3

2F1

(
1,

1

2
; � − 1

2
;− �E(

p2
1 + p2

2 − p2
3

)2

)
+ 2 perms

) ]
(11)

can be converted into the beautiful form,

� = g2�(2 − �)�
3/2−�

E

(4π)�
(−p2

1p
2
2p

2
3

)2−�

[
2π�123 − �2(� − 1)

�(2� − 3)

3∑
k=1

∫ 2φk

0
dχ

(
4 sin2 χ

2

)�−2
]

. (12)
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Another useful expression (in that limits can be taken more easily) is obtained by adopting an
integral representation of the hypergeometric functions; thus

� = g2�(2 − �)�
3/2−�

E

(4π)�
( − p2

1p
2
2p

2
3

)2−�


2π�123 − �2(� − 1)

�(2� − 3)

∑ ∫ 1

0

(
p2

i p
2
j

)2−�
t�−5/2 dt

�
3/2−�

E

√
4p2

i p
2
j − �Et


 . (13)

Davydychev has gone further and expressed � as a series in (�−2) leading to polylog functions
Lsj , but we shall not require that expansion. Note that the residue at � = 2 of equation (12)
or (13) vanishes (as it must since the vertex is convergent in 4D), and that the residue in 6D at
� = 3 reduces to −g2/128π3, because of the identity,

p2
3

(
p2

1 + p2
2 − p2

3

)
+ p2

1

(
p2

2 + p2
3 − p2

1

)
+ p2

2

(
p2

3 + p2
1 − p2

2

) = �E.

Another interesting situation arises when p2
1 ≡ p2, p2

2 ≡ p′2, p2
3 = 0, whereupon

�E = −(p2−p′2)2, tan2 φ1 = −1, tan2 φ2 = −1, tan2 φ3 = (p2−p′)2/(p2+p′2)2,�123 = 0.
Thus,

�(p2, p′2, 0) = 16g2�(2 − �)�(1/2)

(16π)��(� − 3/2)

[(−p′2)�−2 − (−p2)�−2]

[p′2 − p2]
(14)

which allows one to take the limit p′2 = p2 → −µ2, namely,

�(−µ2,−µ2, 0) = 16g2�(3 − �)�(� − 2)�(1/2)µ2�−6

(16π)��(� − 3/2)
→ − g2

2(4π)3(� − 3)

as � → 3.
We now suggest a way of ‘going nonperturbative’, which captures the essence of the vertex

triangular topology. We firstly observe that the asymptotic form of the inverse propagator
�−1

φ (p) � (p2)1+γφ can be obtained directly from the self-energy (p) in 2� dimensions
simply by making the replacement � = 3 + γφ in the dimensionally continued result, apart from
an overall factor that must be carefully chosen to accord with the renormalization condition.
This procedure will lead from (6) to �−1

φ (p) = p2(−p2/µ2)γφ , with γφ = −g2/6(4π)3 to
first order.

Applying the same procedure to the (φ†φσ)6D vertex, we will end up with

�(p1, p2, p3) = p2
1p

2
2p

2
3

�
3/2
E

(
p2

1p
2
2p

2
3

µ2�E

)γ�
[

2π�123 − �2(2 + γ�)

�(3 + 2γ�)

3∑
k=1

∫ 2φk

0
dχ

(
4 sin2 χ

2

)1+γ�

]

(15)

where γ� = −g2/2(4π)3 to first order. Realizing that
∑

k φk = π and

3∑
k=1

sin(2φk) = �
3/2
E

/
2p2

1p
2
2p

2
3

we can readily establish that � → 1 when γ� → 0. Also one may check that an expansion of
(15) to order g2 reproduces perturbation theory, including terms such as

3∑
k=1

∫ 2φk

0
dχ

(
4 sin2 χ

2

)
log

(
4 sin2 χ

2

)

which appear after renormalization. Thus, we are emboldened to regard (15) as a decent
nonperturbative vertex that incorporates triangular topological contributions, but whether we
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can easily make use of it is entirely another matter since its form is analytically complicated.
Perhaps a more amenable form of (15) is

�
(
p2

1, p
2
2, p

2
3

) =
(
p2

1p
2
2p

2
3

)1+γ�

µ2γ��
3/2+γ�

E

�(3 + 2γ�)

�2(2 + γ�)

[
2π�123 −

∑
k

(sin φk)
3+2γ�

cos φk

×
∫ 1

0

(1 − t)1+γ� dt√
t(1 + t tan2 φk)

]
(16)

because, without too much trouble, it allows us to take the light-like limit,

�(p2, p′2, 0) = µ2

(1 + γ�)(p′2 − p2)

[(
−p2

µ2

)1+γ�

−
(

−p′2

µ2

)1+γ�
]

(17)

a result which we foresaw earlier. The special limit when one leg carries zero momentum,
�(p2, p2, 0) = (−p2/µ2)γ� is then readily found. Also the renormalized perturbative answer
stated at the end of the last subsection falls out upon expansion to first order in γ� , provided
the anomalous dimension is correctly identified.

Let us perform a similar procedure on (ψ̄γ5φψ)4D. Here the full vertex, consists of two
terms:

�5(p
′, p) = (�A + �B[γ · p′, γ · p])γ5

whose first order in g2 terms are summarized in (9) and (10). In making the substitution
� → 2+γ so as to obtain a nonperturbative expression, it is very easy to handle the propagator
(7) and arrive at

S−1(p) = γ ·p(−p2/µ2)γψ γψ = −g2/32π2. (18)

Also it is possible to exponentiate the (renormalized) self-energy-like terms in the vertex parts
A and B arising in equations (9) and (10):

1 + ig2
∫

d̄2�k/k2(p + k)2 → 1 + (g2/16π2) log(−p2/µ2) → (−p2/µ2)g
2/16π2

.

On the other hand, the full triangular topology integral (12) or (13) will produce a finite result

�F

(
p2

1, p
2
2, p

2
3

) = 4√
�E

(−p2
1p

2
2p

2
3

µ2�E

)γ�
[

2π�123 − �2
(
1 + γ�E

)
�

(
1 + 2γ�E

) ∑
k

∫ 2φk

0
dθ (sin2 θ)−γ�

]
.

One may verify that the vertex scaling behaviour is reproduced in �F and that it vanishes
for γ� = 0, as it should in zeroth order. Anyhow, combining the terms, we arrive at the
nonperturbative Yukawa vertex parts,

2�A(p′, p) = (−p2/µ2)γ� + (−p′2/µ2)γ� − (p − p′)2�F (19)

��B(p′, p) = (p′2 − p2)[(−p′2/µ2)γ� − (−p2/µ2)γ� ] + (p − p′)2�FB (20)

where

�FB = [(p − p′)2 − p2 − p′2]�F + 2(−(p − p′)2/µ2)γ� − (−p2/µ2)γ� − (−p′2/µ2)γ� .
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3. Applications

The question is how to apply all this. One’s first inclination is to substitute the vertex
(15) or (16) into (1) and (2) so as to find the relation between anomalous dimension and
coupling constant—a relation which is normally found by a tedious process of perturbative
renormalization and is worked out to order g6 at least. Our proposal is that nonperturbative
forms of propagator and vertex avoid the need for renormalization since the skeleton expansion
is automatically regularized at the physical dimension D = 4 or 6; as we shall see, such a
procedure will lead to a transcendental relation between γ and g2. This happens even when
one truncates to the first contribution to the self-energy, having the form∫

�(p, p + k)�(p + k)�(k)�(p + k, p) dDk

although one ought properly to consider the entire series of skeleton terms with their ever more
intricated topologies (and matching vertices). Nonetheless, considering even the first term of
the skeleton series is a substantial improvement on past efforts [3, 4] and is worthy of study.

The task of evaluating the first term g2F2(p, µ, γ (g2)) is rather daunting: one is required
to integrate the product of two dressed propagators with the square of expression (15) or
expression (16), and this is technically very demanding. Numerical calculations are useless
from that viewpoint because one is interested in obtaining the analytical connection between
γ and g2, even if comparison with perturbation theory eventually necessitates a power series
expansion in g2. A number of helpful auxiliary integrals are collected in the appendix, but
we are forced to admit that the full-blown integration producing F2 is presently beyond our
technical reach. Faute de mieux we are forced to approximate the skeleton Feynman integral
by one which is doable and which captures the essence of the idea: the main thing is to ensure
that the nonperturbative vertex has the correct scaling behaviour, symmetry properties and
analytic behaviour as far as possible, and that it should by itself regularize the intermediate
momentum integral.

In the following we shall attempt to use a few approximations to the nonperturbative
triangular vertex that reflect its main features, in order to extract the relation between anomalous
dimension and coupling constant. Thus, we will examine a number of models in which F2

is free of infinities and is automatically regularized—it is all too easy to construct models
which have the correct scaling property but which nevertheless contain infinities—but where
the vertex singularities are not quite correct.

3.1. Model 1 for (φ†φσ)6D

Here we make the choice �(p, p + k, k) = (p2(p + k)2/µ2k2)γ and leave the σ propagator
undressed. This has the virtue of simplicity; it possesses symmetry at the φ legs and correct
scaling but is otherwise awry in its analytical properties and especially its vertex singularities.
Ignoring these defects, and using the results in the appendix, we obtain the self-consistency
relation

p2(1+γ ) = ig2
∫

d̄6k

k2(p + k)2(1+γ )

(
p2(p + k)2

k2

)2γ

or

1 = a
�(−1 + γ )�(2 − 2γ )�(2 + γ )

�(4 − γ )�(1 + 2γ )�(1 − γ )
a ≡ g2

(4π)3
. (21)
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This may be contrasted with the rainbow approximation where the self-consistency relation
instead reads

p4�(p) = −ig2
∫

�(p + k)d̄6k/k2 and 1 = a/γ (γ − 1)(γ − 2)(γ − 3).

To obtain a perturbative expansion of (21) we take a series in γ or a as needed to arrive at

γmodel 1 = −a

6
+

11a2

63
− 134a3

65
+ · · ·

compared with [5]

γrainbow = −a

6
+

11a2

63
− 206a3

63
+ · · · γchain = −a

6
+

11a2

63
− 170a3

63
+ · · · .

3.2. Model 2 for (φ†φσ)6D

We now consider a vertex which better captures the analytical behaviour of the triangular
topology but which is necessarily more complicated than the previous model. Here we try to
mimic some of the dependence on tan2 φi which arises in (11) by letting

�2 (
p2

1, p
2
2, p

2
3

) =
[(

p2
1

)1+2γ (
p2

2 + p2
3 − p2

1

)
+

(
p2

2

)1+2γ (
p2

3 + p2
1 − p2

2

)
+ p2

3

(
p2

1p
2
2

)γ (
p2

1 + p2
2 − p2

3

)]/
�E.

Making use of the equations in the appendix, we may arrive at the self-consistency relation,

1 = a

6

[
1

(2 − γ )(γ − 1)
− 1

γ (1 − γ )
+

1

(2 + γ )(3 + γ )
− 1

(1 + γ )(2 + γ )

]

= −a

6

[
1

γ
+

11

6
+

41γ

36
+ · · ·

]
. (22)

This corresponds to the series

γmodel 2 = −a

6
+

11a2

63
− 162a3

65
+ · · · .

3.3. Model 3 for (ψ̄γ5ψφ)4D

Before making any approximations, we may note that the F2 contribution to the inverse fermion
propagator γ ·pS−1(p), with

�5 = (�A + �B[γ ·p, γ · p′])γ5

can be written as

i
g2

p2

∫
d̄4k

((p + k)2)1+γ
�σ (k)

[
1

2
(p2 + (p + k)2 − k2)

(
�2

A − �E�2
B

)
+ �E�A�B

]
. (23)

Therefore, if we use a quenched σ approximation, the F2 term leads to the following self-
consistent relation for the anomalous dimension,

(p2)1+γ = ig2
∫

d̄4k

2k2((p + k)2)1+γ

[
(p2 + (p + k)2 − k2)

(
�2

A − �E�2
B

)
+ 2�E�A�B

]
(24)

into which we may feed various models for the vertex parts �A,B . Of course we would dearly
have loved to make use of their nonperturbative forms given in the previous section (consistent
with triangular topology) but find the resulting computation too hard analytically; so we are



Self-consistent nonperturbative anomalous dimensions 11707

obliged to model something resembling the true vertex that is within our capabilities. Noting
expressions (9) and (10) and ensuring correct scaling, we take

�A =
(

p2(p + k)2

µ2k2

)γ

and �E�B = γ [p2 − (p + k)2]

(
p2k2

µ2(p + k)2

)γ

.

Inserting this into (24) we end up with

1 = − a

2γ

[
1 +

5γ

2
+

13γ 2

4
+ · · ·

]
a ≡ g2

16π2

corresponding to

γmodel 3 = −a

2
+

a2

23
− 14a2

25
+ · · · . (25)

This result should be compared with the rainbow and chain approximations [5] which, for
Yukawa theory, read

γrainbow = −a

2
+

a2

23
− 2a2

25
+ · · · γchain = −a

2
+

a2

23
− 2a2

25
+ · · · .

3.4. Light-like model 4 for (φ†φσ)6D

We saw earlier that in the light-like limit of one of the momenta, not necessarily the limit of
zero momentum transfer, the vertex function assumed the form of the difference of two self-
energies, at least to first order in perturbation theory. Let us therefore make the approximation

�φ(p + k)�(p + k, p)�φ(p) � �φ(p + k) − �φ(p)

p2 − (p + k)2

in quenched (φ†φσ)6D theory, since we have already disregarded the σ field dressing. Using
the usual spectral form of the φ field propagator, we may therefore substitute

�φ(p) =
∫ ∞

0

ρ(w2) dw2

p2 − w2
�φ(p + k)�(p + k, p)�φ(p)

�
∫ ∞

0

ρ(w2) dw2

((p + k)2 − w2)(p2 − w2)
(26)

in the Schwinger–Dyson equation,

Z−1
φ = p2�φ(p) − ig2Z−1

φ Zg

∫
d̄6k �φ(p + k)�(p + k, p)�φ(p)/k2. (27)

Recalling that Z−1
φ = ∫

ρ(w2) dw2, the spectral equation reduces to∫
dw2ρ(w2)

w2ZφZ−1
g + (p,w)

p2 − w2
= 0 (28)

where (p,w) = g2
∫

d̄2�k/[k2((p + k)2 − w2)] is the first order self-energy for a φ field of
mass w, to be taken in the limit as � → 3. This has essentially the same form as in the gauge
technique [9] for QED, except that it is no longer true that Zg = Zφ—and this is just what one
needs! The point is that the self-energy carries the infinity (in its real part) leaving us with the
representation

(p,w) = a

� − 3

[
1

6
p2 − 1

2
w2

]
+

(p2 − w2)2

π

∫
Im(s,w) ds

(s − w2)2(s − p2 − iε)
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while Z−1
φ Zg = 1 + 2a/3(� − 3) and they both combine neatly to produce a factor (p2 − w2)

in the numerator of (28). Therefore taking the imaginary part of (28), one arrives at

−πp2ρ(p2) +
∫

Im(p,w)ρ(w2) dw2

p2 − w2
= 0. (29)

Since Im(p,w) = g2(p2 − w2)2/6(4π)3p4, or Im(p,w)/(p2 − w2) = a(1 − w2/p2)2/6
(29) may be solved by use the ansatz ρ(w2) ∝ (w2)−1−γ , yielding the sought-after relation

1 = − a

3γ (1 − γ )(2 − γ )
or γmodel 4 = −a

6
+

9a2

63
− 144a3

65
· · ·

only exact to order a. Evidently �φ(p) has the same anomalous dimension as its spectral
function (or imaginary part) ρ.

All the above model conclusions should be treated with great caution and some scepticism.
We supplied models of the true vertex whose scaling coincided to second order with known
results for the anomalous dimension, but which possessed incorrect singularities. It would
have been quite easy to change radically the results of our calculations by taking equally
plausible vertex ansätze. So all we can purport to have demonstrated to the critical reader is
that it is possible, in principle, to regulate the skeleton expansion by using nonperturbative
propagators and vertices all the while staying in integer dimensions. In the end we dare
only claim that the scheme outlined in the introduction is a viable method for discovering the
anomalous scaling properties of the field theory in question. After all, the skeleton expansion
has recently proved its worth in a similar context [10] and we have no reason to suspect that it
will fail us in the present circumstances. This said we are at a computational impasse in our
approach in attempting to include the proper vertex with its full complement of singularities;
unfortunately we see no easy way out of this difficulty if we shy away from numerical methods.
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Appendix

Here we present a number of auxiliary integrals which assist in determining the connection
between γ and g2. The first one of these is

Iabc ≡ −i
∫

d̄2�k/(k2)a((p + k)2)b�c
E �E = 4[k2p2 − (k · p)2]. (A1)

The case c = 0 is rather well known to practitioners in this field and can be found, using
Feynman parametric techniques, to equal

Iab0 = (p2)�−a−b

(−4π)�

�(a + b − �)�(� − a)�(� − b)

�(a)�(b)�(2� − a − b)
. (A2)

For c 
= 0 we must resort to another method in order to find Iabc. Namely, we go to the frame
where p = i(

√
q2; �0); q2 ≡ −p2, k =

√
K2(i cos θ; sin θ, . . .);K2 ≡ −k2, so

d̄2�k = i
K2�−1 dK

(2π)2�
(sin θ)2�−2 dθ

2π�−1/2

�(� − 1/2)

(p + k)2 = −q2 − K2 − 2
√

q2K2 cos θ �E = 4K2q2 sin2 θ.
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Hence,

Iabc =
∫ ∞

0

2π�−1/2K2�−1 dK

(2π)2��(� − 1/2)

∫ π

0

(sin θ)2�−2 dθ

(−K2)a(−q2 − K2 − 2qK cos θ)b(4K2q2 sin2 θ)c
.

(A3)

But the standard texts inform us that∫ π

0

(sin θ)β−1 dθ

(1 + 2z cos θ + z2)α
= √

π�(β)F (α, α − β + 1/2;β + 1/2; z2)/�(β + 1/2)

and∫ ∞

0
K2σ−1F

(
α, β; γ

q2

K2

)
dK = (−q2)σ

�(γ )�(−σ)�(α + σ)�(β + σ)

2�(α)�(β)�(γ + σ)
.

Putting all these together we end up with

Iabc = (p2)�−a−b−2c

(−4π)�4c

�(� − c − 1/2)

�(� − 1/2)

�(a + b + c − �)�(� − a − b)�(� − b − c)

�(a)�(b)�(2� − a − b − 2c)
. (A4)

In particular, for 6D, the result reads

Iab1 = (p2)1−a−b

6(−4π)3

�(a + b − 2)�(2 − a)�(2 − b)

�(a)�(b)�(4 − a − b)
. (A5)

Therefore if one takes b as noninteger for the present, the limit as a → 0,−1 will produce a
vanishing result leading to I0b1 = I−1b1 = 0. We take this result to be correct even for integer
b, paralleling the treatment of tadpole integrals in dimensional regularization.
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